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Comparison of Commercial, Space, Avionics
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Comparison of Commercial, Space, Avionics
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Basic Steps in Fault Handling

 Fault Confinement - limits spread of faults

 Fault Detection - recognizes something unexpected
happened

 Diagnosis - identify location of fault

 Reconfiguration - replace or isolate faulty component

 Recovery - eliminate effect of fault
• Fault Masking - redundant information

• Retry - second attempt at operation

 Restart - resume after correcting state (hot, warm, cold)

 Repair - replace component (on-line, off-line)

 Reintegration - repaired module returned to operation
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MTBF -- MTTD -- MTTR
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Components of a Generic Spacecraft

 Propulsion - controls stability and orientation of
spacecraft. Passive spin control or active thruster control

 Power - generation and storage of electrical power,
typically solar cells for generation and batteries for
storage

 Data Communications - uplink for commands from the
ground, downlinks for data and telemetry (temperature,
power supply, thruster events)

 Attitude Control - dedicated computer to sensing and
controlling orientation and stability of spacecraft

 Command/Control/Payload - spacecraft control and
error recovery
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Generic Spacecraft Fault Handling Approaches
 Self-Tests - Subsystems perform self-tests, such as checksums on

computer memories
 Cross-Checking Between Units -  Either physical or functional

redundancy may be used.  When a unit is physically duplicated, one is
designated as an on-line unit and the other as a monitor.  The monitor
checks all the outputs of the on-line unit.  Alternatively, there may be
disjoint units capable of performing the same function. The less
precise calculation can be used as a sanity check on the more precise
units.

 Safe Mode – Upon error detection, enter “safe” mode shedding all
nonessential electrical loads, stop mission sequencing, orient solar
panels to obtain maximum solar power, await commands from the
ground

 Ground-Initiated Special Tests - These tests are used to diagnose and
isolate failures

 Ground-Trend Analysis -Routine processing and analysis or
telemetry detect long-term trends in units that degrade or wear out.
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Spacecraft Trends

 Move from centralized to distributed computer
architecture utilizing microprocessors and networking

 For deep space probes and planetary rovers, move to
autonomous operation through hot back-up, selective
triplication, and redundant data storage
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Generic Aircraft Fault Handling Approaches
 Physical and spatial redundancy – multiple copies

geographically distributed

 Redundant Paths - for example, different jet engines drive
redundant electrical generators which power two independent
computers that in turn drive different hydraulic systems for
controlling  different flight surfaces

 Functional Redundancy – if both generators fail, batteries
provide power until a ram air turbine can be deployed

 Architectural Migration – from mechanical flight control to
parallel mechanical/electronic to all electronic “fly by wire”

 Tolerate Expanding Fault Classes – component failure,
power failure, object impact, electromagnetic interference,
cloud environment, Byzantine faults, design errors
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Generic Avionics Architecture
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Fault Tolerant Mechanism for Space/Aircraft
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Size of Software in Spacecraft Missions
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Observations and Trends
 Commercial off-the-shelf components – increasing use of

commercial standards and components to decrease design time and
cost.  Accommodations for unique environment and safety issues.
Other issues include obsolescence, updates, integration, validation, and
adequate technical support.

 Autonomy and fly-by-wire software – digital control of aircraft and
increasing autonomy of spacecraft under software control

 Escalating fault sources and evolving redundancy – evolved from
basic command/monitor pair to triplication/median pick voting to
command/monitor redundancy.  Design diversity to tolerate design
flaws. Spacecraft focus on availability and longevity while aircraft
focus on safety and dependability

 Safing – historically spacecraft incorporates safing which may no
longer be effective for critical flight phases and autonomous operation

 Deadlines – both spacecraft and aircraft systems have “shipping date”
deadlines dictated by planetary physics and financial consequences


